





| Total Questions : 50     |                          |                               |                             | Time : 1 hr.             |  |  |  |  |  |
|--------------------------|--------------------------|-------------------------------|-----------------------------|--------------------------|--|--|--|--|--|
| PATTERN & MARKING SCHEME |                          |                               |                             |                          |  |  |  |  |  |
| Section                  | (1) Logical<br>Reasoning | (2) Mathematical<br>Reasoning | (3) Everyday<br>Mathematics | (4) Achievers<br>Section |  |  |  |  |  |
| No. of Questions         | 15                       | 20                            | 10                          | 5                        |  |  |  |  |  |
| Marks per Ques.          | 1                        | 1                             | 1                           | 3                        |  |  |  |  |  |

## **SYLLABUS**

Section – 1: Verbal and Non-Verbal Reasoning.

**Section – 2:** Real Numbers, Polynomials, Pair of Linear Equations in Two Variables, Quadratic Equations, Arithmetic Progressions, Triangles, Coordinate Geometry, Introduction to Trigonometry, Some Applications of Trigonometry, Circles, Areas Related to Circles, Surface Areas and Volumes, Statistics, Probability.

**Section – 3 :** The syllabus of this section will be based on the syllabus of Mathematical Reasoning and Quantitative Aptitude.

Section - 4: Higher Order Thinking Questions - Syllabus as per Section - 2.



| _  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            |                                                      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 5. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            | A 210°<br>Q B P                                      |
| 6. | The angles of depression of two consec<br>right and left of an aeroplane are 60° and<br>aeroplane. Find the height of the aeropla<br>(A) 0.634 km (B) 1.682 km (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d 45°, respectively a                                                                                                      | as observed from the                                 |
|    | EVERYDAY MAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | THEMATICS                                                                                                                  |                                                      |
| 7. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | he first train travels                                                                                                     | s 5 km/hr faster than<br>hen find the average<br>/hr |
| 8. | <ul> <li>A design on a floor is made up of triangul</li> <li>24 cm, 32 cm and 40 cm. Find the cost of</li> <li>the rate of ₹ 1.50 per cm<sup>2</sup>.</li> <li>(A) ₹ 97920</li> <li>(B) ₹ 65280</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                      |
|    | ACHIEVERS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SECTION                                                                                                                    |                                                      |
| 9. | Solve the following questions and select<br>(i) If $\frac{\cos \alpha}{\cos \beta} = m$ and $\frac{\cos \alpha}{\sin \beta} = n$ , then $(m^2 + 1)^2$<br>(ii) If $\csc A = 2$ , then the value of $\frac{1}{\tan A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + $n^2$ ) cos $\alpha$ cos $\beta$ cot                                                                                     | $\beta$ is equal to                                  |
|    | (A) (i) - $n^3$ ; (ii) - $\sqrt{2} - 1$ (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B) (i) - <i>n</i> ; (ii) - 2<br>D) (i) - <i>n</i> ²; (ii) - √3 +                                                           |                                                      |
| 10 | <b>0.</b> Read the given statements carefully and <b>Statement-I :</b> If the quadratic equation perfect square, then the values of <i>k</i> are C <b>Statement-II :</b> If $\alpha$ , $\beta$ are the roots of the equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is 4. (A) Both Statement-I and Statement-II are (B) Both Statement-I and Statement-II are (C) Statement-I is true but Statement-II is fully (D) Statement-I is false but Statement-II is false but Stateme | $(4 - k)x^{2} + (2k + 4)$<br>o and 3.<br>e equation $25x^{2} + 2$<br>$x^{2} + 20x + 25 = 0$ .<br>true.<br>false.<br>false. | (x + (8k + 1)) = 0 is a                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            |                                                      |

| 1. (A) | 2. (C) | 3. (B) | 4. (B) | 5. (D) | 6. (A) | 7. (A) | 8. (A) | 9. (C) | 10. (A) |  |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--|

2